
Graph Transformation in Constant Time

Mike Dodds and Detlef Plump

Department of Computer Science
The University of York

Abstract. We present conditions under which graph transformation
rules can be applied in time independent of the size of the input graph:
graphs must contain a unique root label, nodes in the left-hand sides of
rules must be reachable from the root, and nodes must have a bounded
outdegree. We establish a constant upper bound for the time needed to
construct all graphs resulting from an application of a fixed rule to an
input graph. We also give an improved upper bound under the stronger
condition that all edges outgoing from a node must have distinct labels.
Then this result is applied to identify a class of graph reduction systems
that define graph languages with a linear membership test. In a case
study we prove that the (non-context-free) language of balanced binary
trees with backpointers belongs to this class.

1 Introduction

A major obstacle to using graph transformation as a practical computation mech-
anism is its complexity. Finding a match for a rule r in a graph G requires time
O(size(G)size(L)), where L is the left-hand graph of r. This is too expensive for
many applications, even if r is fixed (meaning that size(L) is a constant). For
example, Fradet and Le Metayer [8] and later Dodds and Plump [4] have pro-
posed to extend the C programming language with graph transformation rules
to allow the safe manipulation of pointers. To make such a language acceptable
for programmers, rules must be applicable in constant time.

In [4], constant-time rule application is achieved by using a form of rooted
graph transformation which is characterized by the presence of unique root nodes
in rules and host graphs. These roots serve as entry points for the matching algo-
rithm and ensure, under further assumptions on left-hand sides and host graphs,
that all matches of a rule can be found in time independent of the size of the
host graph. The purpose of this paper is twofold: to develop a general approach
to rooted graph transformation in the setting of the double-pushout approach,
and to demonstrate the expressive power of rooted graph transformation in a
case study on graph recognition.

Our contributions are as follows. In Section 3, we present two axiomatic con-
ditions each of which guarantees that rules can be applied in time independent
of the size of host graphs. The first condition requires that graphs have a unique
root, nodes in left-hand sides of rules are reachable from the root, and nodes
in host graphs have a bounded outdegree. Under this condition, we establish a

constant upper bound for the time needed to construct all graphs resulting from
an application of a fixed rule to a host graph. The second condition requires, in
addition, that all edges outgoing from a node have distinct labels. We prove that
this leads to a greatly reduced upper bound. Then, in Section 4, we introduce
rooted graph reduction specifications for defining graph languages. We identify
a class of graph reduction specifications that come with a linear membership
test. In a case study we prove that the non-context-free language of balanced
binary trees with backpointers belongs to this class. This is remarkable as the
best known membership algorithm for context-free graph grammars (in the form
of edge replacement grammars) needs cubic time when applied to languages with
bounded node degree.

Our approach to rooted graph transformation is similar to Dörr’s approach
[5] in that he also requires unique root nodes to ensure constant-time application
of rules. Instead of limiting outdegree, he aims at avoiding so-called strong V-
structures in host graphs. This makes the approaches incomparable in terms of
the strength of their assumptions. (We mention a few separating properties in
Section 5.) Another major difference is that in [5], all rules are assumed to belong
to a graph grammar which produces all host graphs (which allows to analyse the
grammar for the impossibility of generating V-structures). We don’t require any
generation mechanism for host graphs. A final difference is that [5] is based on
the algorithmic approach to graph transformation while we work in the setting
of the double-pushout approach.

2 Graphs, Rules and Derivations

We review basic notions of the double-pushout approach to graph transforma-
tion, using a version that allows unlabelled nodes [12]. Rules with unlabelled
nodes allow to relabel nodes and, in addition, represent sets of totally labelled
rules because unlabelled nodes in the left-hand side act as placeholders for arbi-
trarily labelled nodes.

A label alphabet is a pair C = 〈CV , CE〉 of finite sets CV and CE . The elements
of CV and CE serve as node labels and edge labels, respectively. For this section
and the next, we assume a fixed alphabet C.

A graph G = 〈VG, EG, sG, tG, lG, mG〉 consists of a finite set VG of nodes (or
vertices), a finite set EG of edges, source and target functions sG, tG : EG → VG,
a partial node labelling function lG : VG → CV 1 and an edge labelling function
mG : EG → CE . The size of G, denoted by |G|, is the number of its nodes
and edges. The degree of a node v, denoted by degG(v), is the number of edges
incident with v. The outdegree of a node v, denoted by outdegG(v), is the number
of edges with source v. We write outlabG(v) for mG(s−1

G (v)), the set of labels of
all edges outgoing from v. A node v′ is reachable from a node v if v = v′ or if there
are edges e1, . . . , en such that sG(e1) = v, tG(en) = v′ and for i = 1, . . . , n− 1,
tG(ei) = sG(ei+1).

1 The domain of lG is denoted by Dom(lG). We write lG(v) = ⊥ to express that node
v is in VG − Dom(lG).

A graph morphism g : G → H between two graphs G and H consists of
two functions gV : VG → VH and gE : EG → EH that preserve sources, targets
and labels: sH ◦ gE = gV ◦ sG, tH ◦ gE = gV ◦ tG, and lH(gV (v)) = lG(v)
for all v in Dom(lG). A morphism g is injective (surjective) if gV and gE are
injective (surjective); it preserves undefinedness if lH(g(v)) = ⊥ for all v in
VG − Dom(lG). Morphism g is an isomorphism if it is injective, surjective and
preserves undefinedness. In this case G and H are isomorphic, which is denoted
by G ∼= H . Furthermore, g is an inclusion if g(x) = x for all nodes and edges x

in G. (Note that inclusions need not preserve undefinedness.)

A rule r = 〈L ← K → R〉 consists of two inclusions K → L and K → R

such that (1) for all v ∈ VL, lL(v) = ⊥ implies v ∈ VK and lR(v) = ⊥, and (2)
for all v ∈ VR, lR(v) = ⊥ implies v ∈ VK and lL(v) = ⊥. We call L the left-hand
side, R the right-hand side and K the interface of r.

A direct derivation from a graph G to a graph H via a rule r = 〈L← K → R〉,
denoted by G ⇒r,g H or just G ⇒r H , consists of two natural pushouts2 as in
Figure 1, where g : L→ G is injective.

L K R

G D H

g (1) (2)

Fig. 1. A direct derivation

In [12] it is shown that for rule r and injective morphism g given, there exists
such a direct derivation if and only if g satisfies the dangling condition: no node
in g(L) − g(K) must be incident to an edge in G − g(L). If this condition is
satisfied, then r and g determine D and H uniquely up to isomorphim and H

can be constructed (up to isomorphism) from G as follows: (1) Remove all nodes
and edges in g(L) − g(K), obtaining a subgraph D′.3 (2) Add disjointly to D′

all nodes and edges from R−K, keeping their labels. For e ∈ ER−EK , sH(e) is
sR(e) if sR(e) ∈ VR −VK , otherwise gV (sR(e)). Targets are defined analogously.
(3) For each node gV (v) in g(K) with lL(v) 6= lR(v), lH(gV (v)) becomes lR(v).

To keep the complexity considerations below independent of any type system
imposed on graphs, we introduce abstract graph classes and rules preserving such
classes. A graph class is a set C of graphs over C. A rule r is C-preserving if for
every direct derivation G ⇒ H , G ∈ C implies H ∈ C. We can now state the
basic problem we are interested in.

2 A pushout is natural if it is a pullback, too [12].
3 D differs from D′ in that nodes are unlabelled if they are the images of unlabelled

nodes in K that are labelled in L. We do not need D to transform G into H though.

Graph Transformation Problem (GTP).
Given: A graph class C and a C-preserving rule r = 〈L← K → R〉.
Input: A graph G in C.
Output: The set {H | G⇒r H}.

We consider the graphs in {H | G ⇒r H} up to isomorphism, which makes
this set finite (as there are only finitely many morphisms L→ G). The time com-
plexity of GTP is dominated by the cost of finding the injective graph morphisms
L→ G. This is because for each of these morphisms, checking the dangling con-
dition and transforming G into H can be done in time independent of the size
of G (assuming a suitable data structure for graphs). This leads us to the core
problem to solve.

Graph Matching Problem (GMP).
Given: A graph class C and a C-preserving rule r = 〈L← K → R〉.
Input: A graph G in C.
Output: The set {g : L→ G | g is injective}.

To solve the GMP in general requires time |G||L| – better algorithms are not
known. If we consider L as part of the input rather than as given, the GMP
essentially becomes the subgraph isomorphism problem which is NP-complete
[11]. (This is the problem to decide whether there exists an injection from L to
G. In the worst case, if there is none, this is as expensive as finding all injections.)

3 Rooted Graph Transformation

We now present two conditions each of which ensures that the problems GTP
and GMP can be solved in time independent of the size of the input graph G.
Both conditions put restrictions on the rule r and the graph class C.

Condition I.
There are ̺ ∈ CV and an integer b ≥ 0 such that

(1) L contains a unique ̺-labelled node from which each node is reachable, and
(2) for every graph G in C,

(i) there is a unique ̺-labelled node, and
(ii) the outdegree of each node is bounded by b.

We call the distinguished node labelled with ̺ the root. The next condition
differs from Condition I in clause (2)(ii).

Condition II.
There exists ̺ ∈ CV such that

(1) L contains a unique ̺-labelled node from which each node is reachable, and
(2) for every graph G in C,

(i) there is a unique ̺-labelled node, and
(ii) distinct edges outgoing from the same node have distinct labels.

Remark 1. Condition II implies Condition I, which can be seen by choosing
bound b as the size of CE . The converse does not hold in general.

Remark 2. The conditions do not guarantee that r preserves the constraints
on C. To preserve property (2) of Condition I, it suffices that the right-hand
side R of r contains a unique ̺-labelled node, and that for each node v in K,
outdegR(v) ≤ outdegL(v). The preservation of property (2) of Condition II will
be discussed in Section 4.

The following algorithm solves the Graph Matching Problem: it constructs
the set AI of all total injections between the left-hand side of a rule and a
target graph. The algorithm starts with the partial injection A0 that is defined
as matching the root only. Each iteration of the main loop extends the injections
in the previous working set with a single edge and its target node, or a single
edge, until the injections in the set are total. When an iteration adds some node
or edge to the domain of the injections, we speak of it being matched. Edges are
matched in an order which ensures that when an edge is matched its source must
have been matched in some previous iteration. This ensures that edge matching
is inexpensive. This algorithm is based on the similar isomorphism construction
algorithm described in [5].

In defining the algorithm, we use some extra notions. Given partial functions
f, f ′ : A→ B, we write f ext f ′ by Z if Dom(f) ⊇ Dom(f ′), Dom(f)−Dom(f ′) =

Z and for each x ∈ Dom(f ′), f(x) = f ′(x). A partial graph morphism f : G
par
−−→

H is a graph morphism from some subgraph of G to H . For some graph G and
label ̺ we describe a list of edges e1 . . . eK ∈ EG as an edge enumeration if
every edge in EG appears exactly once in e1 . . . eK , and for every edge ei, either
lG(sG(ei)) = ̺ or ∃j < i : sG(ei) = tG(ej).

Algorithm 1 (Graph Matching Algorithm). The algorithm works for a
rule r = 〈L← K → R〉, an input graph G ∈ C, as stated in the Graph Matching
Problem, and it assumes that Condition I is satisfied.

e1 . . . e|EL| ⇐ edge enumeration for L and ̺

Attach tag to the unique ̺-labelled node in L

A0 ⇐ {h : L
par
−−→ G | h is injective ∧Dom(hV) = l−1

L (̺) ∧Dom(hE) = ∅}
for i = 1 to |EL| do

if tL(ei) is not tagged then
attach tag to tL(ei)

Ai ⇐ {h : L
par
−−→ G | h is injective ∧ ∃h′ ∈ Ai−1 :

(hE exth′
E by{ei} ∧ hV exth′

V by{tL(ei)})}
else

Ai ⇐ {h : L
par
−−→ G | h is injective ∧ ∃h′ ∈ Ai−1 :

(hE exth′
E by{ei} ∧ hV = h′

V)}
end if

end for
return AI = A|EL|

Proposition 1 (Correctness of Algorithm 1). Algorithm 1 solves the Graph
Matching Problem.

Proof. We have to show that the returned set AI is the set of all total injective
graph morphisms from L to G.

Soundness. We first show that AI contains only total injections L → G. By
construction of the sets Ai, it is clear that these sets contain partial injections
from L to G, so the same holds for AI . It therefore suffices to show that all
morphisms in AI are total. From the definition of an edge enumeration it follows
every edge e ∈ EL will be picked by some iteration of the loop. At this point
there are three cases: (1) e and tL(e) are added to the domain of one or more
morphisms h in Ai−1, where h is already defined for sL(e), and Ai becomes the
set of all extended morphisms. (2) e is added to the domain of one or more
morphisms h in Ai−1, where h is already defined for both sL(e) and tL(e), and
Ai becomes the set of all extended morphisms. (3) Matching of e fails because
either Ai−1 is empty or there is no counterpart of e in G. Then Ai will be empty
and hence AI will be empty, too. As a consequence, if AI is not empty upon
termination of the loop, all its morphisms must be defined for all edges in L and
their incident nodes. Hence, by the structure of L, they are total morphisms.

Completeness. From the definition of an edge enumeration it follows that
every edge in EL will be picked by some iteration of the loop. Without loss of
generality, let ei be the i-th element of the edge enumeration e1 . . . e|EL|, and so
the edge picked in the i-th iteration. Also, let Li be the subgraph of L consisting
of the edges e1, . . . , ei and their incident nodes. Then a straightforward induction
on i proves that

{h : L
par
−−→ G | h is injective and Dom(h) = Li} ⊆ Ai.

Since L|EL| = L by the structure of L, it follows that AI contains all total
injections from L to G. ⊓⊔

Theorem 1 (Complexity of Algorithm 1). Algorithm 1 requires time Σ
|EL|
i=0 bi

at most. The maximal size for the resulting set AI is b|EL|.

Proof. From the definition of an edge enumeration, it follows that a run of the
algorithm involves |EL| iterations of the loop. In each iteration, one of the cases
(1) to (3) of that proof applies. In finding the maximal running time, case (3)
can be ignored as Ai+1 is just set to ∅. To consider the costs in (1) and (2), let
e be the edge picked in the body of the loop.

Case (1): Both e and tL(e) are added to the domain of one or more morphisms
h in Ai−1, where h is already defined for sL(e), and Ai becomes the set of all
extended morphisms. By Condition I, there are at most b edges outgoing from
hV (sL(e)). It follows |Ai| ≤ b|Ai−1|. Hence the maximal time needed to update
Ai is b|Ai−1|.

Case (2): Only e is added to the domain of one or more morphisms h in Ai−1,
where h is already defined for both sL(e) and tL(e), and Ai becomes the set of

all extended morphisms. For the same reason as in Case (1), the time needed to
update Ai is b|Ai−1|.

The initialisation of the algorithm constructs the set A0 which, by Condition
I, contains exactly one morphism and therefore can be constructed in time 1
(assuming a suitable data structure for graphs in C). No time is neede for the
construction of the edge enumeration e1 . . . e|EL|, as it can be pre-processed. By
the above case analysis, executing the body of the loop takes time b|Ai−1| at
most. Thus we obtain the following bound for the overall running time:

1 + b|A0|+ b|A1|+ . . . + b|A|EL||.

By recursively expanding each term |Ai| to its maximal size, we arrive at the
expression

1 + b + b2 + . . . + b|EL| =

|EL|∑

i=0

bi.

This expansion also shows that maximal size of AI is b|EL|. ⊓⊔

For the rule r = 〈L← K → R〉 of the GMP and the GTP, we define size by
|r| = |L|+ |K|+ |R|.

Corollary 1 (GTP under Condition I). Under Condition I, the Graph Trans-

formation Problem can be solved in time Σ
|EL|
i=0 bi + 4|r|b|EL|.

Proof. Recall from Section 2 that constructing a derivation G ⇒r H consists
of four stages: (1) Constructing an injective morphism L → G that satisfies
the dangling condition. (2) Removing nodes and edges. (3) Inserting nodes and
edges. (4) Relabelling nodes. To extend this to the GTP problem, we modify
stage (1) to: Constructing the set A of all injections L → G that satisfy the
dangling condition. We then perform stages (2) – (4) for all members of the set
A.

The dangling condition can be decided for an injection h : L → G in time
|VL|. This is because the condition holds if and only if for all nodes v in VL−VK ,
degL(v) = degG(h(v)). We assume a graph representation such that the degree
of any node can be retrieved in constant time, so we can compare degL(v) with
degG(h(v)) for all v in L in time |VL|.

We construct the set AI of all injections between L and G using Algorithm 1.
We then complete stage (1) by filtering this set for those morphisms that satisfy
the dangling condition.

Given a morphism h, it is obvious that stage (2) can be executed in time
|L − K|, and stage (3) can be done in time |R − K|. Stage (4) requires time
|VK | at most. In the worst case, stages (2) to (4) must be completed for every
injection in the set AI . This results in the time bound

|EL|∑

i=0

bi + b|EL|(|VL|+ |L−K|+ |R−K|+ |VK |).

As |VL|, |L|, |R|, |K| and |VK | are all bounded by |r|, we can estimate the

expression from above by Σ
|EL|
i=0 bi + 4|r|b|EL|. ⊓⊔

Note that according to the GTP and Condition I, |r|, |EL| and b are constants
and hence the above time bound is a constant—albeit a possibly large one. The
next theorem and the subsequent corollary show that under Condition II, the
constant time bounds for the GMP and the GTP decrease from being exponential
in |EL| down to being linear in |EL| or |r|.

Theorem 2 (Complexity of Algorithm 1 under Condition II). Under
Condition II, Algorithm 1 requires time 2|CE ||EL|+1 at most. The resulting set
AI contains at most one injection.

Proof. Under Condition II, outgoing edges from a node must be distinctly la-
belled. Hence a partial morphism in An can be extended by an edge outgoing
from a matched node in at most one way. Since |A0| = 1, it follows that |An| ≤ 1
for every iteration n. In particular, AI ≤ 1.

In the time bound of the algorithm established in the proof of Theorem 1, we
can therefore replace each |Ai| with 1. We also replace b with |CE | (the number
of edge labels in the given alphabet). This gives

1 + |CE |+ |CE |+ . . . + |CE | = |CE ||EL|+ 1.

⊓⊔

Corollary 2 (GTP under Condition II). Under Condition II, the Graph
Transformation Problem can be solved in time |CE ||EL|+ 4|r|+ 1.

Proof. By Theorem 2, Algorithm 1 will need time at most |CE ||EL| + 1 under
Condition II. The proof of Corollary 1 shows that applying r for a found mor-
phism can be done in time |VL| + |L −K| + |R − K| + |VK |. Hence we obtain
the overall bound

|CE ||EL|+ 1 + |VL|+ |L−K|+ |R−K|+ |VK |.

As before, |VL|, |L|, |R|, |K| and |VK | are bounded by |r| and hence we can
estimate the bound from above as |CE ||EL|+ 4|r|+ 1. ⊓⊔

4 Efficient Recognition of Graph Languages

In this section we apply the results of the previous section to show that graph
languages specified by rooted graph reduction systems of a certain form come
with an efficient membership test. This is in sharp contrast to the situation for
graph grammars where even context-free languages can be NP-complete.

We define graph reduction languages by adapting the approach of [2] to the
setting of rooted graph transformation.

Definition 1 (Signature and Σ-graph). A signature Σ = 〈C, ̺, type〉 con-
sists of a label alphabet C = 〈CV , CE〉, a root label ̺ ∈ CV , and a mapping
type: CV → CE that assigns to each node label a set of edge labels. A graph G

over C is a Σ-graph if it contains a unique ̺-labelled node, the root of G, and if
for each node v, (1) lV (v) 6= ⊥ implies outlabG(v) ⊆ type(lG(v)) and (2) distinct
edges outgoing from v have distinct labels. The set of all Σ-graphs is denoted
by G(Σ).

Next we define a class of rules that preserve Σ-graphs.

Definition 2 (Σ-rule). A rule r = 〈L ← K → R〉 is a Σ-rule if L, K and R

are Σ-graphs and for each node v in K,

(1) lL(v) = ⊥ = lR(v) implies outlabL(v) = outlabR(v) and
(2) lR(v) 6= ⊥ implies (outlabR(v)∩ type(lL(v)))∪ (type(lL(v))− type(lR(v))) ⊆

outlabL(v).

Conditions (1) and (2) ensure that r can add outgoing edges to a node only
if the node is relabelled and the edge labels do not belong to the node’s old type.
Also, outgoing edges of a relabelled node are deleted if their labels do not belong
to the node’s new type.

Proposition 2 (Σ-rules preserve Σ-graphs). Let G⇒r H such that G is a
Σ-graph and r a Σ-rule. Then H is a Σ-graph.

We now define a ’rooted’ version of the graph reduction specifications of [2].

Definition 3 (Graph reduction specification). A graph reduction specifica-
tion S = 〈Σ, CN ,R,Acc〉 consists of a signature Σ = 〈C, ̺, type〉, a set CN ⊆ CV
of nonterminal labels, a finite set R of Σ-rules and an R-irreducible4 Σ-graph
Acc, the accepting graph, such that in Acc and in all left-hand sides of rules in
R, each node is reachable from the root. The graph language specified by S is
L(S) = {G ∈ G(Σ) | G⇒∗

R Acc and lG(VG) ∩ CN = ∅}.

We often abbreviate ’graph reduction specification’ by GRS. The following
simple example of a GRS specifies cyclic lists as used in pointer data structures.

Example 1 (Cyclic lists). The GRS CL = 〈ΣCL, ∅,RCL,AccCL〉 has the signa-
ture ΣCL = 〈{̺, E}, {p, n}, ̺, {̺ 7→ {p}, E 7→ {n}}〉. The accepting graph AccCL

and the rules RCL are shown in Figure 2, where the unique ̺-labelled node is
drawn as a small grey node and the label p of its outgoing edge is omitted.

The language L(CL) consists of cyclic lists built up from E-labelled nodes
and n-labelled edges, and a distinguished root pointing to any node in the list.
For a proof, we have to show soundness (every graph in L(CL) is a cyclic list)
and completeness (every cyclic list is in L(CL)). Soundness follows from the fact
that for every inverse5 r−1 of a rule r in RCL, and every cyclic list G, G⇒r−1 H

4 A graph G is R-irreducible if there is no step G ⇒R H .
5 The inverse of a rule is obtained by swapping left- and right hand sides together

with the inclusion morphisms.

AccCL:

E n

Reduce:

E 1

E 2

E

n

n

⇒

E 1

E 2

n

Finish:
E 1

E

nn
⇒

E1 n

Fig. 2. GRS CL for recognising cyclic lists

implies that H is a cyclic list. For, every reduction G⇒∗ Acc via RCL gives rise
to a derivation Acc ⇒∗ G via R−1

CL and hence G is a cyclic list. Completeness
is shown by induction on the number of E-labelled nodes in cyclic lists. The
cyclic list with one E-labelled node is AccCL, which belongs to L(CL). If G is
a cyclic list with at least two E-labelled nodes, then there is a unique injective
morphism from the left-hand side of either Reduce (if G has more than two
E-labelled nodes) or Finish (if G has exactly two E-labelled nodes) to G. Hence
there is a step G ⇒RCL

H , and it is easily seen that H is a cyclic list that is
smaller than G. Hence, by induction, there is a derivation H ⇒∗

RCL
Acc and

thus G ∈ L(CL).

Two properties of CL allow to test graphs in G(ΣCL) efficiently for mem-
bership in L(CL). Firstly, reduction sequences terminate after a linear number
of steps because both rules reduce the size of a graph. Secondly, reduction is
deterministic as ΣCL-graphs contain a unique root and the left-hand sides of the
two rules do not overlap. ΣCL-graphs can therefore be tested for membership in
L(CL) by a straightforward reduction algorithm: apply the rules of CL as long
as possible and check if the resulting graph is isomorphic to AccCL. ⊓⊔

The properties of CL allowing efficient membership checking can be gener-
alized to obtain a class of GRSs whose languages can be recognised in linear
time.

Definition 4 (Linear GRS). A GRS 〈Σ, CN ,R,Acc〉 is linearly terminating
if there is a natural number c such that for every derivation G ⇒R G1 ⇒R

. . . ⇒R Gn on Σ-graphs, n ≤ c|G|. It is closed if for every step G ⇒R H on

Σ-graphs, G ⇒∗
R Acc implies H ⇒∗

R Acc. A linearly terminating and closed
GRS is a linear GRS.

The recognition problem (or membership problem) for GRS languages is de-
fined as follows:

Given: A GRS S = 〈Σ, CN ,R,Acc〉.
Instance: A Σ-graph G.
Question: Does G belong to L(S)?

Theorem 3 (Linear recognition). For linear GRSs, the recognition problem
is decidable in linear time.

Proof. Consider a GRS S = 〈Σ, CN ,R,Acc〉. Membership of a Σ-graph G in
L(S) is tested as follows: (1) Check that G contains no node labels from CN . (2)
Apply the rules of R (nondeterministically) as long as possible. (3) Check that
the resulting graph is isomorphic to Acc.

Phase (2) of this procedure terminates in a linear number of reduction steps
as S is linearly terminating. By Corollary 2, each step can be performed in
constant time. So the time needed for phases (1) and (2) is linear. Phase (3)
amounts to checking (i) if there is an injective morphism Acc → H , where H

is the graph resulting from the reduction of G, and (ii) if |Acc| = |H |. Part (i)
requires the same time as the Graph Matching Problem under Condition II (note
that Acc is a fixed Σ-graph) and hence, by Theorem 2, can be done in constant
time. It follows that phase (3) requires only constant time.

The procedure is correct by the fact that S is closed: if G ⇒∗
R H such that

H is R-irreducible and H 6∼= Acc, then there is no derivation G⇒∗
R Acc. This is

shown by a simple induction on the length of G⇒∗
R H . ⊓⊔

To demonstrate the expressive power of linear GRSs, we show that the non-
context-free graph language of balanced binary trees with back-pointers (BBTBs
for short) can be specified by a linear GRS.6 A BBTB consists of a binary tree
built up from nodes labelled B, U and L such that all paths from the tree root to
leaves have the same length. Each node has a back-pointer to its parent node, the
back-pointer of the tree root is a loop. Nodes labelled with B have two children
to which edges with labelled l and r are pointing; nodes labelled with U have one
child to which a c-labelled edge points; nodes labelled with L have no children.
In addition to this tree, a BBTB has a unique root node whose outgoing edge
points to any node in the tree.

The GRS BB = 〈ΣBB, {B′, U ′},RBB,AccBB〉 is shown in Figure 3, where
type(B) = type(B′) = {l, r, b}, type(U) = type(U ′) = {c, b} and type(L) = {b}.
Note that B′ and U ′ are nonterminal labels. As in Example 1, we draw the root
of a BBTB (not to be confused with the tree root) as a small grey node and omit
the label of its unique outgoing edge. We also omit the label b of back-pointers
and draw them as dashed edges.

6 The language of BBTBs is not context-free in the sense of either hyperedge replace-
ment grammars [6] or node replacement grammars [7].

AccBB :

L

Up:

y ∈ {L, U, U ′}

U 1

y 2

c ⇒

U ′ 1

y 2

c

D1:

y ∈ {B, B′}
z ∈ {U, U ′}

y 1

z 2 B 3

4

l r

l

⇒

y 1

z 2 B′ 3

4

l r

l

D2:

B 1

2

l ⇒

B′ 1

2

l
R1:

y ∈ {U, U ′}
y

2

c

⇒

2

R2(l):

x ∈ {B, B′}

x

1

L L

l r ⇒

U

1

L

c

R2(r): as R2(l), but with labels l and r swapped

R3(l):

x ∈ {B, B′}
y ∈ {U, U ′}
z ∈ {U, U ′}

x

1

y z

2 3

l r

c c

⇒

U

1

B

2 3

c

l r

R3(r): as R3(l), but with the left-hand root pointing to the z-node

Fig. 3. GRS BB for recognising balanced binary trees with back-pointers

Proposition 3 (Correctness). L(BB) is the set of all balanced binary trees
with back-pointers.

The proof of Proposition 3 is given in the Appendix.

Proposition 4 (Linearity). GRS BB is linearly terminating: the length of any
derivation G ⇒∗

RBB
H on ΣBB-graphs is at most |G| + |VG|. BB is also closed

and hence is a linear GRS.

Proof. For every ΣBB-graph G, define T (G) = |G| + |l−1
G (CV − CN)| where

|l−1
G (CV − CN)| is the number of nodes not labelled with B′ or U ′. We show

that for every step G⇒RBB
H on ΣBB-graphs, T (G) > T (H). This implies the

bound in the proposition since |l−1
G (CV − CN)| ≤ |VG|.

Rules Up, D1 and D2 preserve the size of graphs but decrease the number
of terminally labelled nodes, hence they decrease T ’s value. Rules R1, R2(l)
and R2(r) decrease size without increasing the number of terminal node labels,
so they decreasse T ’s value too. Rules R3(l) and R3(r) decrease size by three
and increase the number of terminal node labels by at most two, thus they also
decreasse T ’s value.

BB is closed because for every ΣBB-graph G, the set

{g : L→ G | L is a left-hand side in RBB and g is injective}

contains at most one morphism. This can easily be checked by inspecting the
rules of RBB, keeping in mind that distinct outedges of a node always have
distinct labels. ⊓⊔

That the non-context-free language of BBTBs is definable by a linear GRS is
quite remarkable. The best known membership test for context-free graph gram-
mars (in the form of edge replacement grammars) needs cubic time when applied
to languages with bounded node degree [14]. Context-free graph languages with
unbounded node degree can even be NP-complete [13].

5 Related Work

In addition to the remarks made in the Introduction on the relation of our ap-
proach to Dörr’s work [5], we mention a few separating properties resulting from
the different assumptions. While our approach is restricted to graphs of bounded
outdegree, [5] allows an unbounded outdegree as long as outgoing edges form per-
mitted V-structures. On the other hand, we allow parallel edges with the same
label which are forbidden in Dörr’s approach. Moreover, under Condition I, our
only constraint on labels is that there is a uniquely labelled root, while all other
items may have the same label. This is not possible with the V-structure ap-
proach which needs more structure in the labelling of graphs. Another difference
is that rule applications in [5] are always deterministic while rules conforming
to our Condition I may be nondeterministic.

Some authors have considered rooted graph matching under severe structural
restrictions on host graphs, usually resulting from particular application areas.
For example, [9, 10] consider graphs representing infinite trees by ‘unrolling’ from
some root. These graphs permit a linear matching algorithm.

There is also a large body of work on recognising graph languages which
relates to our work on graph reduction specifications. For example, in [1] it is
shown that all graph language expressible in monadic second-order logic (MSOL)
can be recognised in linear time if the language has bounded treewidth. But our
example of balanced binary trees with back-pointers is not expressible in MSOL
and hence outside the scope of this approach.

An efficient linear-time algorithm for recognising such bounded-treewidth
languages is given in [3]. This algorithm achieves linear-time termination even
though individual reductions may require worse than constant time by recording
which potential application areas have already been searched. The algorithm
works for special reduction systems, which are size-reducing graph reduction
systems similar a linear GRSs without roots, but with several other restrictions.

References

1. S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese. An algebraic theory of
graph reduction. Journal of the ACM, 40(5):1134–1164, 1993.

2. A. Bakewell, D. Plump, and C. Runciman. Specifying pointer structures by graph
reduction. Mathematical Structures in Computer Science. To appear. Preliminary
version available as Technical Report YCS-2003-367, University of York, 2003.

3. H. L. Bodlaender and B. van Antwerpen-de Fluiter. Reduction algorithms for
graphs of small treewidth. Inf. Comput., 167(2):86–119, 2001.

4. M. Dodds and D. Plump. Extending C for checking shape safety. In Proceed-
ings Graph Transformation for Verification and Concurrency, Electronic Notes in
Theoretical Computer Science. Elsevier, 2005. To appear.

5. H. Dörr. Efficient Graph Rewriting and its Implementation, volume 922 of Lecture
Notes in Computer Science. Springer-Verlag, 1995.

6. F. Drewes, A. Habel, and H.-J. Kreowski. Hyperedge replacement graph grammars.
In G. Rozenberg, editor, Handbook of Graph Grammars and Computing by Graph
Transformation. Volume I: Foundations, chapter 2, pages 95–162. World Scientific,
1997.

7. J. Engelfriet and G. Rozenberg. Node replacement graph grammars. In G. Rozen-
berg, editor, Handbook of Graph Grammars and Computing by Graph Transforma-
tion. Volume I: Foundations, chapter 1, pages 1–94. World Scientific, 1997.

8. P. Fradet and D. L. Métayer. Shape types. In Proceedings of the 1997 ACM
Symposium on Principles of Programming Languages, pages 27–39. ACM Press,
1997.

9. J. J. Fu. Linear matching-time algorithm for the directed graph isomorphism
problem. In Proceedings of the 6th International Symposium on Algorithms, volume
1004 of Lecture Notes in Computer Science, pages 409–417. Springer-Verlag, 1995.

10. J. J. Fu. Pattern matching in directed graphs. In Proc. Combinatorial Pat-
tern Matching, volume 937 of Lecture Notes in Computer Science, pages 64–77.
Springer-Verlag, 1995.

11. M. R. Garey and D. S. Johnson. Computers and Intractability. W.H. Freeman and
Company, 1979.

12. A. Habel and D. Plump. Relabelling in graph transformation. In Proc. Interna-
tional Conference on Graph Transformation (ICGT 2002), volume 2505 of Lecture
Notes in Computer Science, pages 135–147. Springer-Verlag, 2002.

13. K.-J. Lange and E. Welzl. String grammars with disconnecting or a basic root of
the difficulty in graph grammar parsing. Discrete Applied Mathematics, 16:17–30,
1987.

14. W. Vogler. Recognizing edge replacement graph languages in cubic time. In Proc.
Workshop on Graph Grammars and Their Application to Computer Science, vol-
ume 532 of Lecture Notes in Computer Science, pages 676–687, 1991.

Appendix

Proof of Proposition 3. Call a graph an NBBTB if it can be obtained from a
BBTB by relabelling any number of B-nodes into B′-nodes, and any number of
U -nodes into U ′-nodes. Call the single edge with a ̺-labelled node as its source
the root pointer. Given an NBBTB in which the root pointer does not point to the
tree root, call a node a root-pointer-predecessor if it is on the unique path of non-
back-pointer edges from the tree root to the parent of the root-pointer target.
Call a graph an EBBTB if it is an NBBTB satisfying the following conditions:
(1) root-pointer-predecessors are not labelled U ′ and (2) all nodes labelled B′

are root-pointer-predecessors. Note that every BBTB it is also an EBBTB.
Soundness. We will show that every ΣBB-graph reducible to AccBB is an

NBBTB, implying that every graph in L(BB) is a BBTB. It suffices to show that
the inverses of the rules in RBB preserve NBBTBs, as then a simple induction
on the length of reductions to Acc gives the desired result.

The inverses of the rules Up, D1 and D2 are clearly NBBTB-preserving as
they only relabel nonterminal into terminal nodes and redirect the root pointer
to some other node in the tree. The inverse of rule R1 can only be applied at the
tree root because this is the only node with a loop attached to it. Hence the rule
adds a new tree root, which preserves balance. The inverses of rules R2(l) and
R2(r) are also NBBTB-preserving: replacing a U -node pointing to a leaf with a
B-node pointing to two leaves preserves balance. Similarly, the inverses of R3(l)
and R3(r) preserve balance and the other NBBTB properties.

Completeness. We will show that every EBBTB is reducible to AccBB, im-
plying that every BBTB is in L(BB). In Proposition 4 it is shown that every
RBB-derivation sequence terminates, so it suffices to show that (1) AccBB is the
only RBB-irreducible EBBTB and (2) applying any rule in RBB to an EBBTB
results in an EBBTB.

We first show that every non-AccBB EBBTB is reducible by RBB, by enu-
meration of all possible cases. If the root pointer points to a U or U ′-node, we
know from ΣBB that it must have an outgoing edge labelled c. If it has no in-
coming edges, it is the treeroot and we can reduce it using rule R1. If this node
has an incoming edge, it must be labelled c, l or r. If c, from the signature and
the definition of an EBBTB we know that the source must be a U node, and

so rule Up applies. If the incoming edge is labelled l or r, its source must be a
B or B′ node and it must have a sibling r or l edge. From the graph balance
property, the other edge must point to another node with an outgoing edge –
either a U , U ′, B, or B′. B′ is excluded by the definition of an EBBTB. If U

or U ′ rule R3(l) or R3(r) applies. If a B, by ΣBB it must have outgoing l and r

edges, and so rule D1 applies.
If the root pointer points to a B-node, by ΣBB it must have an outgoing

edge labelled l, so the D2 rule applies. By the definition of an EBBTB, the root
pointer cannot point to an B′-node.

If the root pointer points to an L-node, either there are no incoming edges
(aside from a backpointer loop) so the graph is AccBB, or it must have a single
incoming edge labelled l, r, or c. If c, by ΣBB and definition of EBBTB the source
must be a U and the graph can be reduced by the Up rule. If the incoming edge
is labelled l or r, its source must be labelled B and it must have a sibling edge
labelled r or l. We know by the balance property that the target of this edge
must be another L-node, so either R2(l), or R2(r) applies. This completes the
proof that every EBBTB apart from AccBB can be reduced.

We now show that all rules preserve EBBTBs, once again by case enumer-
ation. Rule Up moves the root pointer from its current position to the node’s
parent and relabels this parent from U to U ′. As the rest of the graph is pre-
served, this preserves EBBTB condition (1). Rules D1 and D2 move the root
pointer and relabel a single B-node to B′. In both cases the B′-node is added
to the root-pointer-predecessors, so EBBTB condition (2) is satisfied. No B′

nodes are added, so EBBTB condition (1) is satisfied. Rules Up, D1 and D2
only relabel nodes and move the root pointer, so balance is preserved.

Rule R1 deletes a U or U ′-node and moves the root pointer to the child of the
current position. We know from the EBBTB conditions that this child cannot
be labelled B′, and so the EBBTB conditions are satisfied. Rule R1 can only
delete the treeroot, as this is the only non-L-node that can be safely deleted,
and so it preserves balance. Rules R2(l) and R2(r) replace a B or B′-node with
a U -node and move the root pointer. Replacing a B-node and two leaves with a
U -node and one leaf preserves balance. The EBBTB conditions are satisfied, as
the new target of the root pointer is a U -node and the root-pointer-predecessors
are otherwise preserved. Rules R3(l) and R3(r) replace two U or U ′-nodes with
a B node. The rule preserves balance because the distance from the ‘top’ of
the rule to the ‘bottom’ is preserved. These rules replace a single B or B′-node
on the path to the treeroot with a U -node, and the root-pointer-predecessors
are otherwise unaltered. No B′-nodes are added, so both EBBTB conditions are
satisfied. This completes the proof that rules in RBB are EBBTB-preserving. ⊓⊔

